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ABSTRACT

 

Aim

 

To test the mechanisms driving bird species richness at broad spatial scales
using eigenvector-based spatial filtering.

 

Location

 

South America.

 

Methods

 

An eigenvector-based spatial filtering was applied to evaluate spatial
patterns in South American bird species richness, taking into account spatial auto-
correlation in the data. The method consists of using the geographical coordinates of
a region, based on eigenanalyses of geographical distances, to establish a set of spatial
filters (eigenvectors) expressing the spatial structure of the region at different spatial
scales. These filters can then be used as predictors in multiple and partial regression
analyses, taking into account spatial autocorrelation. Autocorrelation in filters and
in the regression residuals can be used as stopping rules to define which filters will
be used in the analyses.

 

Results

 

Environmental component alone explained 8% of variation in richness,
whereas 77% of the variation could be attributed to an interaction between environ-
ment and geography expressed by the filters (which include mainly broad-scale climatic
factors). Regression coefficients of environmental component were highest for AET.
These results were unbiased by short-scale spatial autocorrelation. Also, there was a
significant interaction between topographic heterogeneity and minimum temperature.

 

Conclusion

 

Eigenvector-based spatial filtering is a simple and suitable statistical
protocol that can be used to analyse patterns in species richness taking into account
spatial autocorrelation at different spatial scales. The results for South American birds
are consistent with the climatic hypothesis, in general, and energy hypothesis, in
particular. Habitat heterogeneity also has a significant effect on variation in species
richness in warm tropical regions.
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INTRODUCTION

 

Tests of the mechanisms driving species diversity have usually been

made using multiple regression and related statistical approaches,

such as path analysis, in which species richness is regressed against

sets of environmental variables or other surrogates of ecological

and historical processes (Hawkins & Porter, 2003a,b; Hawkins

 

et al

 

., 2003a; Diniz-Filho 

 

et al

 

., 2004; and references therein).

However, the lack of independence between pairs of observations

across geographical space (spatial autocorrelation) is commonly

found in ecological data, in such a way that more complex strategies

for data analyses are required (Legendre, 1993).

As recently pointed out by Griffith (2003), spatial autocorrela-

tion can be interpreted in two slightly different, not mutually

exclusive, ways. First, methods of spatial autocorrelation assess-

ment, especially the Moran’s 

 

I

 

 correlograms, can be used to explore

spatial patterns in data (e.g. gradients, trends, mosaics or patches)

or to verify the presence of latent predictors, which are also spa-

tially autocorrelated, in a multiple regression, at different spatial

scales (the map pattern). For example, Hawkins & Porter (2003a)

recently showed that, after fitting annual actual evapotranspira-

tion (AET) to richness data of North American birds, a significant

amount of autocorrelation remained in the regression residuals.

After mapping these residuals, they realized that historical effects
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accounted for the remaining spatial patterns. When age of the

cells after the last deglaciation was included in the model,

residual autocorrelation almost disappeared.

Second, spatial autocorrelation can be interpreted as re-

dundant information on data, because of the ‘contagious’ effect

among adjacent spatial units. Thus, degrees of freedom are over-

estimated because spatial units are considered pseudo-replication

of the phenomenon (e.g. see Dutilleul, 1993). This interpretation

leads to the well known problem of statistical inference under

spatial autocorrelation, i.e. if there is autocorrelation in multiple

regression residuals, due to unknown factors or intrinsic depend-

ence in data, the standard errors of regression coefficients are

usually underestimated and, consequently, Type I errors may be

strongly inflated. Diniz-Filho 

 

et al

 

. (2003) discussed the origins

of spatial autocorrelation in grid data usually used in geographical

ecology. It may be due to unknown factors explaining richness at

a given spatial scale, as found by Hawkins & Porter (2003a).

However, and perhaps more importantly, short-distance auto-

correlation may be due to simple dependence caused by the way data

is collected (for example, richness is frequently derived from the

overlap of extents of occurrence, and once ranges are larger than

cell size, adjacent cells usually have rather similar species com-

position and, consequently, similar species richness). In this case,

introducing other predictors will rarely be able to overcome the

autocorrelation effects, in such a way that more complex

generalized least squares (GLS) or autoregressive models that

incorporate the spatial patterns into model structure or regression

residuals must be used, providing in principle unbiased regression

coefficients. These different forms of spatial models are complex,

computationally intensive and sometimes difficult to implement

(Haining, 1990; Griffith, 2003; but see Lichstein 

 

et al

 

., 2002).

Moreover, in some situations, the application of autoregressive

methods does not ensure that all autocorrelation in data is taken

into account (see Tognelli & Kelt, 2004 for a recent example).

More recently, Borcard & Legendre (2002) and Griffith (2003)

proposed that eigenvector-based spatial filters could be a more

simple solution to the autocorrelation problem. The basic idea is

to extract eigenvectors of a connectivity (or distance, see below)

matrix among spatial units (e.g. cells in a grid), and use these

eigenvectors, which describe the spatial structure of the region

under study at different scales, as additional predictors of the

response variable. This way, any remaining spatial structures in

regression residuals would be taken into account, and so these

models would not be affected by the problem of spatial auto-

correlation. Griffith (2003) showed that the advantage of this

approach is the use of a multiple regression framework, which is

familiar to most ecologists and evolutionary biologists. The

approach by Borcard & Legendre (2002) is based on a principal

coordinate analysis of the truncated geographical distance matrix

among spatial units (see also Diniz-Filho 

 

et al

 

., 1998; for a similar

application to phylogenetic comparative analyses), whereas Griffith

(2003) used transformations of a connectivity (binary) matrix

among spatial units.

Our goal here is to discuss the eigenvector-based spatial filtering

and analyse geographical patterns in species richness of South

American birds and correlate them with climatic and environmental

variation across the continent. The spatial filters were used in a

multiple–partial regression designed to partition between purely

environmental–climatic and geographical effects, and the results

were compared with more commonly used partial regression

based on polynomial expansions (i.e. incorporating a cubic trend

surface into the model). We also compared regression coeffi-

cients of climatic–environmental factors as predictors of species

richness, obtained after incorporating spatial filters in the multi-

ple regression, with the coefficients of the factors in a generalized

least squares (GLS) approach that incorporates spatial structure

into model residuals. In this way, we explore many of the analytical

frameworks available for ecologists in dealing with the complex

issue of relating species richness and environmental factors at

broad spatial scales.

 

METHODS

Species richness and environmental data

 

South America was divided into 374 equal area cells 220 km 

 

×

 

220 km (2

 

° ×

 

 2

 

°

 

 at the equator). The geographical ranges of the

2894 species of terrestrial birds present on the continent were

redrawn over this grid, and the presence of each species in each

cell was recorded (see Hawkins 

 

et al

 

., 2003b; for details). Coastal

cells were combined to obtain areas approximately equal in size

to inland cells. Thus, area was held as constant as possible and

was not included explicitly in the analysis (Fig. 1a). Due to com-

putational limitations of SPACEMAKER 2 (see below), we

randomly deleted 14 cells and all further analyses were based on

a grid with 360 cells.

Five climatic variables that have been shown to be associated

with broad-scale richness gradients were compiled from various

sources: (1) potential evapotranspiration (PET); (2) actual eva-

potranspiration (AET); (3) mean daily temperature in the cold-

est month; (4) annual mean temperature; and (5) annual rainfall

(see Diniz-Filho 

 

et al

 

., 2003; Hawkins 

 

et al

 

., 2003a; for details).

We also included range in elevation (Pergamon World Atlas,

1968), estimated to the nearest 50 m, to estimate topographic

variability. Further, we incorporated an interaction term between

topographic variability and minimum temperature to capture

the idea that topographic variability is only important in warm

environments, creating strong environmental effects at the

mesoscale (see Rahbek & Graves, 2001 for a similar approach using

the interaction between latitude and topographic variability).

This variable was called climatic heterogeneity (Diniz-Filho

 

et al

 

., 2004). Finally, we counted the number of habitats in each

cell using remotely sensed AVHRR (Advanced Very High Resolu-

tion Radiometer) land cover data (Hawkins & Porter, 2003b;

Diniz-Filho 

 

et al

 

., 2004), creating an explicit measurement of

habitat variety.

 

Extracting and interpreting spatial filters

 

Geographical coordinates (latitude and longitude) of each cell

covering South America were used to construct a pairwise matrix

of geographical distances among cells (

 

G

 

), which was truncated
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(see below) at a distance of 1000 km (truncation distance, 

 

D

 

). This

truncation distance is important because it gives more weight to

short-distance effects, after the filtering process. This initial

truncation value was based on our previous analyses of spatial

autocorrelation in residuals of species richness after fitting

environmental data (Hawkins 

 

et al

 

., 2003a). Thus, distances larger

than 1000 km were replaced by 4 

 

× 

 

D

 

 (= 4000 km), whereas dis-

tances < 1000 km were kept as they were calculated (see Fig. 1 of

Borcard & Legendre, 2002). The truncated 

 

G

 

 matrix was then

submitted to a principal coordinate analysis (PCORD) (Legendre

& Legendre, 1998), which consisted of performing an eigenana-

lysis of the double-centred 

 

G

 

 matrix.

The eigenvectors associated with positive eigenvalues of the

double-centred 

 

G

 

 matrix represent the spatial relationship

among cells covering South America, at different spatial scales.

The first eigenvectors represent broad-scale variation, whereas

eigenvectors derived from small eigenvalues represent fine-scale

variation. These vectors are then new orthogonal variables

(called filters by Griffith, 2003) that capture, at different scales,

the geometry of the grid covering the region under analyses

(i.e. South America) and that can be incorporated into multiple

regression approach in different ways, taking into account spatial

autocorrelation and allowing an unbiased estimation of regres-

sion parameters. Figure 2 shows a schematic view of how filters

are calculated and interpreted [see also Borcard & Legendre

(2002) for a similar representation of this technique].

The next step of the analytical protocol discussed here includes

the selection of the eigenvectors that should enter as predictors in

the model. Borcard & Legendre (2002) suggested testing the sig-

nificance of all the partial regression coefficients and retaining

only the eigenvectors that are significant. Griffith (2003) showed

that using all eigenvectors in the analyses might ‘overcorrect’ for

spatial autocorrelation, and proposed some strategies to choose

some of the vectors. These strategies included: (i) maximization

of the regression multiple correlation coefficient (

 

R

 

2

 

); (ii) mini-

mization of residual spatial autocorrelation; and (iii) a significant

correlation between response variable and each selected eigen-

vector (see Diniz-Filho 

 

et al

 

., 1998; for a different approach in

comparative analyses, based on broken-stick null distribution of

eigenvalues).

We mapped the spatial filters and analysed spatial patterns in

both filters and in the residuals from a multiple regression fitting

species richness successively to these filters, using spatial correlo-

grams defined using Moran’s 

 

I

 

 coefficients calculated for 15 distance

classes (Legendre & Legendre, 1998; Diniz-Filho 

 

et al

 

., 2003).

This way, only filters that in fact contain important parts of the

geometry of the continent will be used in the analysis, avoiding

excess of predictors in the multiple regression (see Rohlf, 2001).

In summary, filters can be considered as different and inde-

pendent propositions of how cells are geographically related or

connected to each other, expressed as new variables derived from

geographical distances and indicating the spatial relationships

among cells. Mapping and running spatial autocorrelation ana-

lysis on filters and regression residuals can help to interpret which

part of spatial structure among cells are captured by each filter.

Besides, including filters in environmental models minimizes the

undesirable effects of subjacent spatial structures that were not

captured by environmental factors (see below). Suppose that the

response variable (species richness in our case) is spatially pat-

terned, for example, with low and high values alternating in

space, forming patches (e.g. in a fragmented landscape). In this

case, it is highly probable that one of the filters will account for

this complex spatial pattern if no environmental factor does this.

Thus, this patchy structure will not be present in the residuals

Figure 1 (a) Distribution of the 360 cells that were used to analyse the spatial variation of bird species richness in South America; and (b) spatial 
variation in the richness of breeding terrestrial bird species in South America.
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and the regression model will not be biased by spatial autocorre-

lation. Indeed, according to Borcard & Legendre (2002), filters

are spatial descriptors of the response variable and can be incor-

porated into analytical frameworks in different ways depending

on the context (see below).

 

Incorporating spatial filters into multiple regression 
and comparison with other methods

 

Partial regression analyses have been used to establish the

amount of variation in richness that can be explained independ-

ently by environmental variables and geography (Legendre &

Legendre, 1998; Balmford 

 

et al

 

., 2001; van Rensburg 

 

et al

 

., 2002;

Ruggiero & Kitzberger, 2004). In these analyses, spatial structure

has been expressed by latitude and longitude and their poly-

nomial expansions, usually up to the third order (i.e. a cubic trend

surface analysis). However, these polynomial expansions usually

take into account only broad-scale effects, and short-distance

autocorrelations remain, in such a way that even the estimation

of spatial trends can be biased (see Haining, 1990 for methods to

correct this problem). But this problem should also be avoided if

‘space’ or ‘geography’ is expressed by a given number of spatial

filters, since they express spatial structure at different spatial

scales. In this paper, we compared the partial regressions obtained

using polynomial expansions and filters as expression of ‘geogra-

phy’, both in terms of their relative components and in terms of

their residual autocorrelation.

Finally, we analysed the partial regression coefficients of

climatic–environmental variables after including the important

spatial filters into the regression model, hoping that this allows a

correct estimate of the effects of each variable, unbiased by spatial

autocorrelation in residuals (as frequently occur with ordinary

least square regression, or OLS). We compared these regression

coefficients with those obtained from different generalized least

squares (GLS) estimates that incorporate spatial structure in the

model residuals, assuming exponential, spherical or Gaussian

relationship between error term and geographical distances (see

Selmi & Boulinier, 2001; Diniz-Filho 

 

et al

 

., 2003; Gaston & Evans,

2004). Model fit and their performance in relation to standard

OLS of species richness against climatic–environmental variables

was tested using Akaike criterion.

Principal coordinate analysis of 

 

G

 

-matrix was performed

using SPACEMAKER 2 (http://www.fas.umontreal.ca/biol /

legendre/), and spatial autocorrelation analyses were performed

in SAAP 4.3 (Wartenberg, 1989). Partial and multiple regressions

were performed in SYSTAT 10 (SYSTAT Inc. 2000), while GLS

estimates were obtained in Proc Mixed routine of SAS (Littell

 

et al

 

., 1996).

 

RESULTS

 

Geographic variation of bird species richness in South America

was strongly autocorrelated, showing a monotonic decrease of

Moran’s 

 

I

 

 coefficient across distances. This can be clearly associ-

ated with broad-scale variation in richness across the continent

(Fig. 1b), in which distant areas have very distinct richness values

(e.g. north–south extremes, and east–west clines due to the Andes).

The climatic–environmental multiple regression model, using all

seven climatic and environmental predictors, explained 85% of

variation in bird species richness, with larger coefficients for AET

and for the interaction between topographic variability and

minimum temperature (Table 1). However, as previously found

using a smaller set of predictors (Hawkins 

 

et al

 

., 2003a), the

residuals of this model still had short-distance positive autocor-

relation (Fig. 4). This indicates that broad scale spatial patterns

in species richness were fully explained by environmental factors,

but that short-distance variation still remains unexplained. So,

other analytical strategies are necessary to take into account these

spatial structures and allow unbiased estimation of regression

parameters.

Out of 359 eigenvalues extracted from the 

 

G

 

 matrix, 175 were

positive and the eigenvectors (filters) associated with these

positive eigenvalues were extracted and analysed. The scree plot

(Fig. 5) showed that the eigenvalues tended to stabilize after

Figure 2 General description of the method used in this study. The 
first panel shows spatial filters calculation based on geographical 
coordinates of the n cells, which are transformed in a Euclidean 
distance matrix (G). Borcard & Legendre (2002) truncated this matrix 
at a given value (D T) and replaced all distance higher than this value 
by 4 × D T. After establishing G, a principal coordinate analysis 
(PCORD) is computed. Eigenvectors (filters, matrix F) associated 
with k positive eigenvalues can then be analysed by mapping and 
by spatial autocorrelation analysis (SAA) (second panel), and results 
of this interpretation permit decisions on which filters (filters 
selection) should be entered into different types of statistical analysis 
(modelling).

http://www.fas.umontreal.ca/biol
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c

 

. 15–20 extracted axes. Moran’s 

 

I

 

 coefficients were used to evaluate

spatial patterns in filters as an effective measure of their spatial

structure (Fig. 6a). The 15 first filters had relatively high Moran’s

 

I

 

 coefficients in the first distance class (i.e. 

 

I

 

 > 0.1), and their

spatial complexity and variable shape of correlograms showed

how they reflected different spatial structures at different spatial

scales (see Fig. 3 for some examples of maps of spatial filters and

Fig. 6b, for the spatial correlograms of the first 15 filters). High

levels of spatial autocorrelation in filters, as in the first eigenvector

(Fig. 6a), tended to be portrayed by a map pattern containing two

major clusters of similar values (one cluster with relatively high

values and the other with relatively low values; see Griffith, 2003).

These clusters tended to be positioned at opposite ends of a map,

suggesting some type of gradient (Fig. 3a). As the degree of posi-

tive spatial autocorrelation decreased, the map pattern became

more fragmented (see Fig. 3d for the map pattern and Fig. 6a for

the spatial correlograms). In short, the first filters possess strong

clinal patterns, with high positive and negative Moran’s 

 

I

 

 in the

first and last distance classes, respectively. The filters with smaller

eigenvalues have successively smaller Moran’s 

 

I

 

 in the first

distance class and start to create an ‘oscillatory’ pattern across

the space.

The coefficient of determination of the regression models

relating species richness and filters, successively added to the

Table 1 Partial regression coefficients of the multiple regression models (b), t statistics and associated P-values for bird species richness 
regressed against environmental factors in South America, according to ordinary least square (OLS), generalized least-squares (GLS, assuming 
a spherical model to describe spatial patterns in residuals) and according to the filters approach. In the Filter model, spatial structure was 
incorporated into the multiple regression by adding 15 eigenvectors (not shown)
 

 

OLS GLS Filters

Variables b t P b t P b t P

Annual rainfall (1) 0.021 3.48 0.001 0.003 0.72 0.471 0.009 1.82 0.070

Annual mean temperature 0.143 1.34 0.181 0.372 5.66 0.000 0.467 5.18 0.000

Range in elevation 0.011 3.04 0.003 0.005 1.41 0.161 −0.003 −0.63 0.527

Potential evapotranspiration 0.064 3.06 0.002 0.017 0.88 0.380 0.011 0.46 0.646

Actual evapotranspiration 0.194 10.52 0.000 0.056 3.44 0.001 0.139 8.34 0.000

Habitat variety −2.599 −1.00 0.319 −0.282 −0.14 0.886 4.653 1.86 0.063

Minimum temperature 0.271 0.22 0.830 −4.204 −4.50 0.000 −4.706 −3.64 0.000

Interaction (range in 

elevation * minimum temperature)

0.001 4.54 0.000 0.001 4.74 0.000 0.001 5.51 0.000

Figure 3 Patterns depicted by 5 spatial filters showing the relationship 
among cells at distinct spatial scales. Increasing darkness of shading 
indicates the largest numerical values of the eigenvectors.

Figure 4 Moran’s I correlogram for bird species richness and 
the residuals of multiple regression model including the seven 
environmental predictors.
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model, increased fast in the first 3 or 4 axes, and started to

stabilize around 10–15 filters (Fig. 6c). These 15 filters together

explained around 84% of variation in species richness, and

Moran’s 

 

I

 

 coefficients of residuals indicated that spatial struc-

tures disappear when all these filters were added as predictors in

the multiple regression (Fig. 6a). This way, we confirmed their

ability to take into account patterns in richness at different spatial

scales.

Thus, it is possible to assume, based on all these previous analyses,

that the first 15 filters contain important and complex spatial

patterns of the South American continent, and that fitting these

filters to species richness is sufficient to remove autocorrelation

structure from the residuals. Since these filters are sufficient to

take into account most of spatial structure in species richness at

different spatial scales, they can be used safely in the multiple

regression framework, together with other environmental

factors, to avoid the undesirable effects of spatial autocorrela-

tion in hypothesis testing and providing unbiased regression

coefficients.

The 15 filters can be used as an expression of ‘space’ or ‘geo-

graphy’ in the framework of variation partitioning. Adding both

filters and the environmental variables as predictors in the multi-

ple regression furnished an 

 

R

 

2

 

 of 0.917 and, after partitioning the

variation in the different components, the following results were

obtained: 8% of the variation in species richness can be explained

by environment alone, whereas 6.7% can be explained by spatial

structures alone. However, 77% of the variation in richness refers

to the interaction between environment and spatial structure,

especially broad-scale ones. These results are very similar to the

OLS partial regression using a third-order polynomial expansion

of latitude and longitude as expression of ‘space’, in which 10.9%

of the variation in species richness can be explained by environ-

ment only, whereas 4.9% can be explained strictly by spatial

structures. The spatially structured environment effect (inter-

action term) explained 74.1% of variation in species richness.

However, using filters provides a slightly better reduction of

spatial autocorrelation in the residuals at short distances, up to

the fourth distance class. Moran’s 

 

I

 

 in the first distance class reduced

from 0.20 in the environmental OLS model to 

 

−

 

0.11, when using

cubic polynomial expansions in the model, and to 0.02 when

using filters (Fig. 7).

Partial regression coefficients of the environmental variables

from the model including 15 spatial filters allowed an estimation

of which predictors were more significantly associated with bird

species richness, independently of spatial structures at distinct

scales (Table 1). When compared to the OLS model, which does

Figure 5 Scree plot of the eigenvalues resulting from the principal 
coordinate analysis applied to the truncated distance matrix among 
cells covering South America.

Figure 6 (a) Moran’s I coefficients of the first 50 filters estimated at 
the first distance class. The same is shown for the residuals of multiple 
regression models after successively including filters; (b) complete 
spatial correlograms for the first 15 filters (scores of principal 
coordinate analysis or eigenvectors); (c) coefficient of determination 
(R2) as a function of the number of filters entering in the multiple 
regression model. All three figures allow interpretation of the 
15 first filters as important descriptors of spatial structure in data.
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not incorporate spatial structure, the best predictors (AET and

climatic heterogeneity) remained highly significant when filters

were added to the model. Three variables (annual rainfall, range

in elevation and PET) that were highly significant in the original

OLS model, became unimportant after adding filters, whereas

habitat variety and both minimum and annual temperature

tended to be significant in the spatial model.

The comparison between these regression coefficients and

those obtained by different GLS models may also reveal how

filters work. The Akaike criterion shows that, out of the three

models tested, the spherical provides the best fit (AIC = 

 

−

 

1809.32)

although all are considered better than the non-spatial OLS

model (AIC = 

 

−

 

1973.66). Regression coefficients of GLS are

similar to those obtained when filters are added into the regression

model, especially because the effects of both annual and mini-

mum temperature are also significant in the best GLS model,

whereas rainfall and habitat variety remain not significant. On

the other hand, the main difference between GLS models and the

filter model is that AET is not the predictor with high coefficient

in GLS, although it is still significant and relatively high when

compared with annual and minimum temperature and with the

coefficient for the interaction term between minimum tempera-

ture and range in elevation.

 

DISCUSSION

 

Grid-based richness data sets are always spatially autocorrelated

and, although fitting environmental models usually take into

account broad-scale patterns, the remaining short-distance auto-

correlation structure may be enough to create bias in regression

coefficients and eventually change interpretations of the eco-

logical mechanisms associated with richness (Diniz-Filho 

 

et al

 

.,

2003). In this paper, we presented how spatial filtering, as pro-

posed by Borcard & Legendre (2002) and Griffith (2003), can

solve this problem by creating spatial variables and incorporating

them into linear models. This method is also much simpler, both

in computation and implementation, than more sophisticated

GLS and autoregression models (Lichstein 

 

et al

 

., 2002; see Grif-

fith, 2003).

One first problem to the application of filtering is how to

define which eigenvectors extracted from a double-centred 

 

G-

 

matrix 

 

(

 

after excluding those associated with negative eigenval-

ues) should be used as filters. In this paper, we followed Griffith

(2003) and initially evaluated both spatial autocorrelation in

filters and regression residuals after fitting these filters to richness

data. These analyses can indicate which eigenvectors contain

significant spatial patterns and at which scale they are effective in

taking into account most of the spatially structured variation in

richness, as indicated by the absence of spatial autocorrelation

in the residuals. At the same time, the regression 

 

R

 

2

 

 can indicate

stabilization of the influence of spatial patterns on richness.

These criteria, if interpreted in isolation or together, can furnish stop-

ping rules to introduce new eigenvectors into multiple regression

and, consequently, help avoid overcorrection of spatial auto-

correlation in data (Griffith, 2003).

Borcard & Legendre (2002) pointed out some aspects of the

extension of their method to data sampled across a surface

(bi-dimensional spatial data). Basically, they indicated that the

properties of the spatial variables, in the bi-dimensional case (e.g.

lattice), were similar to those detected in the one-dimensional

case. In a recent contribution, Borcard 

 

et al

 

. (2004) also applied

the method to study the effects of environmental factors on

phytoplankton biomass data collected over a bi-dimensional

sampling grid. They showed that the method was useful to indicate

how the influence of environmental factors on phytoplankton

biomass varied across spatial scales. Probably, further investiga-

tions may be required on the mathematical and geometrical

properties of filters calculated in bi-dimensional for both regular

and irregular sampling grids (but see Griffith, 2003; for a detailed

evaluation of a very similar method).

Using spatial filters in partial regression may be similar to the

more conventional approach based on geographical coordinates

and their polynomial expansions (quadratic, cubic, and so on)

(e.g. Lobo 

 

et al

 

., 2002; Balmford 

 

et al

 

., 2001; van Rensburg 

 

et al

 

.,

2002; Chown 

 

et al

 

., 2003; Ruggiero & Kitzberger, 2004). How-

ever, it is important to note that, since these partial regression

analyses are based on trend surfaces, only broad-scale spatial

structures are taken into account, and more local spatial autocor-

relation effects are still not considered, eventually creating biased

analyses or generating autocorrelated residuals at short distance

classes (see Haining, 1990). Indeed, we observed in our analyses

that, although adding cubic trends to model reduced first-order

autocorrelation in residuals from 0.20 (in non-spatial regression)

to 0.11, spatial filtering was more effective in taking these short

scale structures into account. Besides, an important problem

with polynomial regression is that individual terms in the regres-

sion model are highly correlated, which creates multicollinearity

problems and difficulties for the analyses of spatial structures at

different scales (Borcard & Legendre, 2002). In short, the main

advantage of the approach shown here is that the eigenvector-based

spatial filters are designed to capture spatial structures at different

scales (see Figs 3 and 6b), in such a way that significance tests of regres-

sion coefficients are not biased by autocorrelation at these scales.

Figure 7 Moran’s I coefficients of the residuals of multiple 
regression models after including filters and environmental data. The 
same is shown for the residuals of multiple (polynomial) regression.
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On the other hand, the interpretation of partial regression

coefficients of environmental and climatic predictors after add-

ing filters should be made carefully. As recently pointed out by

Hawkins & Diniz-Filho (2004), the introduction of geographical

space as a ‘variable’ or as a ‘factor’ in a model (especially latitudi-

nal coordinates only) does not improve ecological interpretation,

except in the sense that regression parameters should not be

biased by local autocorrelation effects. Of course, it is important

to verify at which scale spatial autocorrelation is being taken into

account, but if filters capture better the broad-scale spatial auto-

correlation (usually those with largest eigenvalues), they may

covary with broad-scale climatic factors and the relative impor-

tance of regression coefficients may be shifted towards more local

and meso-scale factors. On the other hand, a significant fraction

of variation attributed to the spatial filters only suggests that

some ecological process has generated the identified spatial pattern,

even though the causal process (as indicated by some relevant

ecological predictor) are unknown and, in this way, not included

in the model (Borcard 

 

et al

 

., 2004).

Our analysis using spatial filters, although corrected efficiently

for autocorrelation in residuals, did not show a scale-shift in

regression coefficients towards more local scales (see Lennon,

2000; Diniz-Filho 

 

et al

 

., 2003; see also Fotheringham 

 

et al

 

.,

2002). Note that although these estimates are shifted toward

‘local’ or ‘semilocal’ scales, they are still global estimates (i.e.

averages across the entire studied area) and should not be con-

fused with local analyses of spatial patterns (Fotheringham et al.,

2002; Foody, 2004). Since different factors affect richness at

different spatial scales, it is usually expected that some methods

designed to control and take into account spatial effects, such as

GLS and autoregressive models, may tend to increase the magni-

tude of factors affecting richness at smaller spatial scales, and at

the same time reduce the importance of climatic factors at broad

scales (Lennon, 2000; Diniz-Filho et al., 2003). However, our

comparison between filtering and GLS did not clearly show this

scale-shift effect, since the best predictors in GLS is annual tem-

perature, which is also an environmental variable affecting richness

at broad spatial scales. This reinforces our previous suggestion

(Diniz-Filho et al., 2003) that comparisons of these different

statistical models may be difficult with these broad-scale environ-

mental data because of the strong multicollinearity effects, and

that indiscriminate use of these methods can cause confusion in

terms of teasing apart the relative importance of these factors. As

pointed out by Griffith (2003) and Borcard & Legendre (2002),

we expect that spatial filtering methods can help ecologists to

overcome one of the most debatable issues in geographical

ecology, namely, the influence of spatial scales on the presumable

mechanisms explaining spatial patterns in species richness.

Finally, our analyses with South American birds using the

eigenvector-based spatial filters support many previous studies

which showed that bird species richness is more associated with

AET at broad scales, giving support to the climatic hypothesis in

general, and to energy hypothesis in particular (Hawkins et al.,

2003a,b; Diniz-Filho et al., 2004; Mathias et al., 2004). Hawkins

et al. (2003a) used a stepwise approach to show that AET is the

best predictor for species richness, using this same dataset. How-

ever, since we used here the full set of predictors, we also showed

that annual temperature, minimum temperature, and climatic

heterogeneity are also important predictors of bird species

richness (see also Diniz-Filho et al., 2004). Marginally significant

coefficients (P < 0.10) also appear for rainfall and habitat variety.

Moreover, the present analysis using eigenvector-based spatial

filtering shows that these conclusions were not biased by the

autocorrelation structures in data at different spatial scales.

However, comparison between filtering and GLS suggest that

these interpretations may be sensitive to the strong multicolline-

arity effects in data, although they all reinforce the multiple

causal mechanisms driving species richness at different spatial

scales.
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